
neuronmi

Feb 13, 2020

Contents:

1 Installation 3

2 Overview 5

3 Generating a mesh 7

4 Running simulations 9

5 Indices and tables 11

i

ii

neuronmi

Neuronmi is a Python package to simulate neuronal activity with finite element methods with a high-level and acces-
sible API.

With neuronmi one can:

• generate 3D meshes with neurons and extracellular probes

• run simulations with different kind of solvers

Contents: 1

neuronmi

2 Contents:

CHAPTER 1

Installation

1.1 Using docker (recommended)

We recommend using our docker container which has all the dependencies pre-installed.

You can run the docker image with:

docker run mirok/neuronmi

1.2 Manual installation

The following are dependencies of neuronmi and how they can be obtained.

IMPORTANT: the current version runs on Python 2.7. We are currently working on a Python 3 update.

1. Generating meshes for neuron simulations with EMI models We rely on Gmsh for both mesh generation and
geometry definition. All is done via the python API of Gmsh. The gmsh module has to be on python path. For the
current shell session this can be accomplished by running

export PYTHONPATH=`pwd`:"$PYTHONPATH"

in the directory where gmsh.py resides (e.g. /usr/local/lib/).

2. Partial differential equation part of EMI The solver requires FEniCS version 2017.2.0. In our experience the
simplest way of installation that also plays along nicely with Gmsh is by using the dedicated Ubuntu package.

3. Ordinary differential equation part of EMI Membrane physics is solved for using cbc.beat (which depends on
dolfin-adjoint).

1.3 Testing

Run from current directory

3

https://hub.docker.com/r/mirok/neuronmi
http://gmsh.info/
https://gitlab.onelab.info/gmsh/gmsh/blob/master/api/gmsh.py
https://fenicsproject.org/download/
https://packages.ubuntu.com/bionic/math/fenics
https://bitbucket.org/meg/cbcbeat
http://dolfin-adjoint-doc.readthedocs.io/en/latest/download/index.html

neuronmi

python -m unittest discover ./test/mesh;
python -m unittest discover ./test/simulators/solver;

4 Chapter 1. Installation

CHAPTER 2

Overview

neuronmi is a Python package with an high-level API to simulate neurons with finite element methods.

It allows users to build meshes with neurons and recording devices, and to simulate the neuronal activity with different
models:

• 3D-3D EMI formulation

• 3D-1D EMI formulation

• hybrid solution (in progress)

The EMI model (Extracellular-Membrane-Intracellular) is the most advanced of these models, as it explicitly rep-
resents the intracellular and extracellular spaces, and the neuronal membrane. This formulation enables users to
simulate and study complex phenomena, including ephaptic effects between neurons and the effect of neural devices
on the recorded signals.

5

neuronmi

6 Chapter 2. Overview

CHAPTER 3

Generating a mesh

The mesh module provides functions and utilities to ease the creation of meshes with neurons and neural devices. The
mesh is generated using Gmsh as backend.

The user can create a mesh with the generate_mesh() function.

mesh_folder = neuronmi.generate_mesh(neurons='bas', probe='microwire', mesh_
→˓resolution=3,

box_size=3)

This snippet of code will generate a mesh with a ball-and-stick neuron (bas) and a microwire in the extracellular
space. The mesh_resolution controls the resolution of the mesh (0 - fine resolution, 5 - coarse recolution). The
box_size controls the size of the bounding box.

There are two kinds of neurons and three kinds of probes built-in.

Neurons:

• 'bas' : ball-and-stick neuron

• 'tapered' : similar to a ball-and-stick, but the connection between the soma and the dendrite/axon is tapered

Probes:

• 'microwire' : cylindrical probe sampling at its tip

• 'neuronexus' : Multi-Electrode Array from Neuronexus Technologies (A1x32-Poly3-5mm-25s-177-
CM32)

• 'neuropixels' : Multi-electrode Array of Neuropixels technology

In order to retrieve the default parameters of a neuron or a probe, one can run:

neuron_params = neuronmi.get_neuron_params('bas')
probe_params = neuronmi.get_probe_params('neuropixels')

Once the parameters are retrieved, they can be modified and used in the generate mesh function. In this example, the
position of the probe is modified.

7

http://gmsh.info/
https://www.neuropixels.org/

neuronmi

probe_params = neuronmi.get_probe_params('microwire')
probe_params['tip_x] = 30

mesh_folder = neuronmi.generate_mesh(neurons='bas', probe='microwire', mesh_
→˓resolution=3,

box_size=3, probe_params=probe_params)

While there can be at most one probe in the mesh, there can be multiple neurons. In order to simulate more than one
neuron, the user can use a list a the neurons parameter. In this case, the neuron_params must also be a list:

neuron_params_1 = neuronmi.get_neuron_params('bas')
neuron_params_2 = neuronmi.get_neuron_params('bas')

Displace two neurons
neuron_params_1['soma_y'] = -20
neuron_params_2['soma_y'] = 20

mesh_folder = neuronmi.generate_mesh(neurons=['bas', 'bas'], probe='microwire', mesh_
→˓resolution=3,

box_size=3, neuron_params=[neuron_params_1,
→˓neuron_params_2])

Finally, one can also instantiate neurons and probes outside and pass them to the generate_mesh() function:

neuron = neuronmi.mesh.shapes.TaperedNeuron({'dend_len': 400, 'axon_len': 200})
microwire_probe = neuronmi.mesh.shapes.MicrowireProbe({'tip_x': 30})
mesh_folder = neuronmi.generate_mesh(neurons=neuron, probe=microwire_probe,

mesh_resolution=3, box_size=3)

8 Chapter 3. Generating a mesh

CHAPTER 4

Running simulations

The simulators module provides solvers for the neuronal activity.

Given a previously simulated mesh in mesh_folder, the user can set some parameters of the simulator and run the
simulation in a few lines.

To run a simulation with default parameters, one can simply run:

_ = neuronmi.simulate_emi(mesh_folder)

4.1 Changing simulation parameters

TODO

4.2 Other solvers

TODO

9

neuronmi

10 Chapter 4. Running simulations

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Installation
	Overview
	Generating a mesh
	Running simulations
	Indices and tables

